Mathematical Statistics Cheatsheet: Chapter 3

Tianyi Ma · July 11, 2024

Note: (*) means that bullet point is not mentioned in class but in handout.

Discrete Random Variable

  • X is a random variable if: S is a sample space with a probability measure and X is a real-valued function defined over the elements of S.

  • Real-valued functions are functions that take a real number or a vector consisted of real numbers as their input values.

  • Random variables denoted by capital letters.

  • X = x is the set of elements in the sample space for which the random variable X has value x.

  • The probability distribution of a discrete random variable X, or probability mass function, or p.m.f. of X, is: the function given by $f(x) = P(X = x)$ for each x within the range of X.

  • Rules of probability distribution fuctions:
    1. $f(x) \geq 0$ for each value within its domain.
    2. $\sum_{x}f(x) = 1$ for $x \in D$.
  • The distribution function, or the cumulative distribution, of a discrete random variable X, or cumulative distribution function, or c.d.f.: the function given by \(F(x) = P(X \leq x) = \sum_{t \leq x}f(t) \text{ for } -\infty < x < \infty\), where $f(t)$ is the value of the probability distribution of X at t.

  • Rules of cumulative distribution function F:
    1. $F(-\infty) = 0$, and $F(\infty) = 1$,
    2. if $a < b$, then $F(a) \leq F(b)$ for any real numbers a and b.
  • Theorem 3.3: if the range of a random variable X consists of the values $x_1 < x_2 < x_3 < … < x_n$, then $f(x_1) = F(x_1)$ and $f(x_i) = F(x_i) - F(x_i-1) \text{ for } i = 2, 3, 4, …, n$.

Continuous Random Variable

  • A probability density function (p.d.f.) of the continuous random variable X, is: a function with values over the set of all real numbers such that $P(a \leq x \leq b) = \int_{a}^{b}f(x)dx$ for any real constants a and b with $a \leq b$.

  • Probability density function syncronoms: probability densities, density functions, densities.

  • P(X = c) = 0 for any real constant c if X is a continuous random variable.

  • Rules of probability density functions:
    1. $f(x) \geq 0 \text{ for } -\infty < x < \infty$,
    2. $\int_{-\infty}^{\infty}f(x)dx = 1$.
  • The distribution function of Y, a continuous random variable, is: $F(y)$ such that $F(y)= P(Y \leq y) \text{ for } −\infty < y < \infty$.

  • Theorem 3.6: Given f(x) and F(x) for a continuous random variable X, then \(P(a \leq X \leq b) = F(b) - F(a)\) for any real number a, b with $a \leq b$ and $f(x) = \frac{dF(x)}{dx} = F’(x)$ where F is differentiable.

Multivariate Distributions: Discrete Random Variable

  • The joint probability distribution of discrete random variables X and Y, is: $f(x, y) = P(X = x, Y = y)$ for each pair of values $(x, y)$ within the range of X and Y.

  • Rules of joint probability distributions:
    1. $f(x, y) \geq 0$ for each pair of values (x, y) within its domain,
    2. $\sum_{x} \sum_{y} f(x, y) = 1$, double summations extends over all pairs $(x, y) \in D$.
  • The joint distribution function, or the joint cumulative distribution of discrete random variables X and Y is given by $F(x, y) = P(X \leq x, Y \leq y) = \sum_{s \leq x} \sum_{t \leq y} f(s, t) \text{ for } -\infty < x < \infty, -\infty < y < \infty$.

Multivariate Distributions: Continuous Random Variable

  • A joint probability density function (or, joint p.d.f.) of the continuous random variables X and Y, is: a bivariate function with values f(x, y) defined over the xy-plane, such that $P[(X, Y) \in A] = \int \int_{A} f(x, y)dxdy$ for any area A in the xy-plane.

  • Rules of p.d.f.:
    1. $f(x, y) \geq 0 \text{ for } -\infty < x < \infty, -\infty < y < \infty$,
    2. $\int \int_{R^2}f(x, y)dA = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y)dxdy = 1$.
  • The joint distribution function or the joint cumulative distribution of continuous random variables X and Y, is: $F(x, y) = P(X \leq x, Y \leq y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(s, t)dsdt \text{ for } -\infty < x < \infty \text{, } -\infty < y < \infty$.

  • $f(x, y) = \frac{\partial^2}{\partial{x}\partial{y}}F(x, y)$

  • (*)Trivariate, …, multivariate case: $F(x_1, x_2, …, x_n) = P(X_1 \leq x_1, X_2 \leq x_2, … X_n \leq x_n) = \int_{-\infty}^{x_n} … \int_{-\infty}^{x_2} \int_{-\infty}^{x_1}f(t_1, t_2, …, t_n)dt_1dt_2…dt_n$, $-\infty < x_i < \infty$, $i = 1, 2, …, n$, $f(t_1, t_2, …, t_n) = P(X_1 = x_1, X_2 = x_2, … X_n = x_n) = \frac{\partial^n}{\partial{x_1} \partial{x_2} …\partial{x_3}}F(x_1, x_2, …, x_n)$.

Marginal Distributions

  • Given discrete random variables X, Y with joint probability function f(x, y) at x, y, the marginal distribution of X is: $g(x) = \sum_{y}f(x, y)$ for each x within the range of X,

the marginal distribution of Y is: $h(y) = \sum_{x}f(x, y)$ for each y within the range of Y.

  • Given continuous random variables X, Y with joint probability function f(x, y) at x, y, the marginal density of X is: $g(x)=\int_{-\infty}^{\infty}f(x,y)dy \text{ for } -\infty < x < \infty$

the marginal density of Y is: $h(y) = \int_{-\infty}^{\infty}f(x,y)dx \text{ for } -\infty < y < \infty$.

  • Joint marginal distributions
    • Discrete:
      • $X_1$’s marginal distribution: $g(x_1) = \sum_{x_2}…\sum_{x_n}f(x_1, x_2, …, x_n)$.
      • $X_1, X_2, X_3$’s marginal distribution: $m(x_1, x_2, x_3) = \sum_{x_4}…\sum_{x_n}f(x_1, x_2, …, x_n)$.
    • Continuous:
      • $X_2$’s marginal distribution: $h(x_2) = \int_{-\infty}^{\infty}…\int_{-\infty}^{\infty}f(x_1, x_3, …, x_n)dx_1dx_3…dx_n$.
      • $X_1, X_n$’s marginal distribution: $\phi(x_1, x_n) = \int_{-\infty}^{\infty}…\int_{-\infty}^{\infty}f(x_2, x_3, …, x_{n-1})dx_2dx_3…dx_{n-1}$.

Conditional Distributions

  • The conditional distribution of X given Y = y, discrete randome variables X and Y with f(x, y) the joint probability distribution, h(y) the marginal distribution of Y at y: $f(x \mid y) = \frac{f(x, y)}{h(y)}$, $h(y) \neq 0$ for each x within the range of X.

  • The conditional distribution of Y given X = x, discrete randome variables X and Y, g(x) the marginal distribution of X at x: $w(y \mid x) = \frac{f(x, y)}{g(x)}$, $g(x) \neq 0$ for each y within the range of Y.

  • The conditional density of X given Y = y, continuous randome variables X and Y with f(x, y) the joint probability distribution, h(y) the marginal distribution of Y at y: $f(x \mid y) = \frac{f(x, y)}{h(y)}$, $h(y) \neq 0$ for $-\infty < x < \infty$.

  • The conditional density of Y given X = x, continuous randome variables X and Y, g(x) the marginal distribution of X at x: $w(y \mid x) = \frac{f(x, y)}{g(x)}$, $g(x) \neq 0$ for $-\infty < y < \infty$.

  • Reasoning behind the definitions:
    • We have the definition of conditional probability of event A given event B: $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$. Let A be $X = x$ and B be $Y = y$, then $P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{f(x, y)}{h(y)}$, given $h(y) \neq 0$.
  • Conditional distributions/densities with multiple variables:
    • Given four discrete random variables, the conditional distribution of $X_3$ at $x_3$ given $X_1 = x_1, X_2 = x_2, X_4 = x_4$ is: $p(x_3 \mid x_1, x_2, x_3) = \frac{f(x_1, x_2, x_3, x_4)}{g(x_1, x_2, x_4)}$, $g(x_1, x_2, x_4) \neq 0$ where $g(x_1, x_2, x_4)$ is the joint marginal distribution of $X_1, X_2, X_4$.
    • The joint conditional distribution of $X_2, X_4$ at $(x_2, x_4)$ is: $p(x_2, x_4 \mid x_1, x_3) = \frac{f(x_1, x_2, x_3, x_4)}{m(x_1, x_3)}$, $m(x_1, x_3) \neq 0$.
    • The joint conditional distribution of $X_2, X_3, X_4$ at $(x_2, x_3, x_4)$ is: $p(x_2, x_3, x_4 \mid x_1) = \frac{f(x_1, x_2, x_3, x_4)}{b(x_1)}$, $b(x_1) \neq 0$.
  • n discrete random variables are independent if and only if $f(x_1, x_2, …, x_n) = f_1(x_1) \cdot f_2(x_2) … \cdot f_ n(x_n)$ for all $(x_1, x_2, …, x_n)$ within range where $f_i(x_i)$ is the marginal distribution function of $X_i$ at $x_i$.

Twitter, Facebook